

Application of vacuum based photodetectors in RICH systems

HERMES at DESY

Deep inelastic ep / en scattering → nucleon spin structure

Measurement of K asymmetries requires π/K separation from 1 to 20 GeV/c \rightarrow 2 radiators

Nuclear Science Symposium and Medical Imaging Conference, Lyon 2000 Christian Joram / CERN

Nuclear Science Symposium and Medical Imaging Conference, Lyon 2000 Christian Joram / CERN

Event reconstruction: Cherenkov "ring" is decomposed into disjointed segments.

- Calculate likelihood for pattern to be generated by signal or background using e,μ,π,K,p hypotheses.
- Arrival time of photons t = f(θ) can be used as consistency check for bckgd suppression.

Auxiliary systems for RICH detectors

Goal: Operate RICH at optimum physics performance in a safe and stable way.

This requires usually a number of auxiliary systems like...

- Circulation systems for radiator fluids (gas or liquid)
- Circulation systems for detector gases (with TEA / TMAE)
- Measurement of radiator transparency
- Measurement of radiator refractivity
- Cleaning of fluids

not covered in this lectures, but very important...

Slow Control (monitoring, control, alarm management)

Some basic considerations

An ideal radiator vessel

- is perfectly leak tight
- is mechanically stable, i.e. it stands any $\Delta p = p_{rad} p_{atm}$
- has massless front and rear walls (in terms of X₀)

A real radiator vessel

- has a certain leak rate
- stands only very small ∆p (some mbar)
- represents always too much material
- Circulation and online cleaning of radiator fluid (liquid or gas) indispensible.
- Circulation system required: cope with atmospheric pressure variations, allow filling and emptying of the fluids.

Cleaning of Cherenkov fluids

- Gases and liquids used as Cherenkov radiators are usually procduced by industry for conventional applications which do not require high purity.
- Example Fluorocarbons: fire extinguishing agent, coolant.
- Use as Cherenkov radiators requires removal of dissolved water, oxygen and other impurities, which are not transparent below λ ^(IIII) 200 nm.

Cleaning applied to liquid or gas phase

Molecular sieves

microporous aluminosilicate crystal

Available with cavity sizes 3 - 13 Å. It traps molecules smaller than the cavity and repels others.

 $Na_{12} [(AIO2)_{12} \bullet (SiO_2)_{12}] \bullet XH_2O$

Used as beads of 2-3 mm ø

Main application: removal of water. Capacity for : ca. 200 mg H_2O/g

Regeneration by baking at T>200°C under dry air (N_2) flow

Oxygen removal

Use of chromium based (CrO_3 "OXISORB") or copper based reducing agents.

Remove O_2 (< 5ppb) but also H_2O (<20 ppb)

Oxisorb cartridges are fairly expensive (ca. 1000 Euro for a cartridge with 9 I O_2 capacity) if large material quantities with high contamination levels are to be cleaned.

Activated carbon

Sponge-like material with molecular pore dimensions and huge specific surface (800-1600 m²/g

Mainly organic contaminants are trapped inside pores. Saturated material can be thermally regenerated or replaced (because it is cheap).

Important: activated carbon cartridges have should be combined with fine pore filters!

Some alternative methods for Particle Identification

Nuclear Science Symposium and Medical Imaging Conference, Lyon 2000 Christian Joram / CERN

Christian Joram / CERN

L2 /29

Nuclear Science Symposium and Medical Imaging Conference, Lyon 2000 Christian Joram / CERN

dE/dx can also be used in Silicon detectors

Example DELPHI microvertex detector (3 x 300 μ m Silicon)

